
The BEq code : A Draft Manual Version 0.1

Emanuele Cordano, Riccardo Rigon

Abstract

The core of hydrological models is the budget of extensive quan-
tities like mass (of water, soil, sediment particles or other chemical
component), momentum and energy in a representative finite volume
which usually derives from discretization of the appropriate partial
differential equations. In this contribution some mathematical char-
acteristics of these equations are emphasized and a method for the
integration of this type of equation based on a new numerical scheme
(Brugnano and Casusulli , 2008; Casulli , 2008) is shown. In partic-
ular, it is analyzed the Boussinesq equation (BEq). This equation
is obtained by integrating Richards’ Equation in the soil thickness if
pressure head can be assumed approximately hydrostatic (Cordano
and Rigon, 2008). The main physical observation on BEq is that the
values of the conserved quantity, i.e. the soil water content, which
is constrained to be positive or null, and in the amount of the driv-
ing force (pressure), which can be negative to properly describe the
drying and the wetting of the catchment, are expressed as functions
of the same variable. The correct formulation of the above equation
should express explicitly this fact, and leads to nonlinearities (with
localized discontinuities of the derivatives of the prognostic variable),
that are usually ignored by most of the practitioners. The method has
been further developed according to Casulli (2008), and the BEq is
expressed in terms of volume of water per cell, taking into account of
the internal (theoretically continuous) spatial distribution of porosity
and bottom topography. Thus, BEq can be solved in a coarse square
grid but the solution accounts for topography and soil properties de-
fined on a finer grid, and can be recast to maintain this information.
The method is implemented in a C language code as Free software. It
is here applied in a mountain catchment.
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Figure 1: Graphical representation of a water-table profile: η elevation of
water surface, zb elevation of the bedrock or bottom, H is the thickness
which can be found from max{0, η − Zb} .

1 Introduction

The Boussinesq equation (BEq) had recently a revamp in literature because
it was seen to represent a feasible alternative to more lumped modeling of
hillslope processes at catchment scale [e.g. Troch et al. (2003); Cordano and
Rigon (2013) and references therein] . This draft manual illustrates numer-
ical program which solves the 2D Boussinesq Equation and provides useful
tools for the integration of 3D Richards’ Equation.

A study cases, related to a natural catchments (Matsch Valley, South
Tyrol, Italy) are here presented.

2 2D Boussinesq equation

This section traces the various formal steps that led to a correct writing of
the discretized equations.

2.1 2D Boussinesq equation in a continuous form

The Boussinesq equation for watertable dynamic (Brutsaert , 1994; Troch
et al., 2003; Hilberts et al., 2007)is here written in 2D:
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s
∂η

∂t
= ∇ · [KS H(η, x, y)∇η] +Q (1)

where η is the piezometric elevation (unknown), t is time, ∇ is the space gra-
dient operator, H(η, x, y) is the thickness of the aquifer which is a function
of η and space, as shown in fig. 1 , Q is a source term which also accounts
for boundary conditions, KS is the saturated hydraulic conductivity and s is
porosity .

2.2 Simple finite-volume scheme

The equation (1) is discretized in space and time following a finite volume
scheme. The domain is divided into a finite number of geometric elements
(2D convex polygons and segments). The equation (1) can be written as a
conservation law for a generic i-th cell:

si pi η
n+1
i = s pi η

n
i + ∆tn

∑
j∈Si

σijλj u
n+1
j + ∆ tnQn+1

i pi (2)

where the apices n and n + 1-th are referred to the n-th and n + 1-th time
instants, ∆tn is the time step between the n + 1-th and n-th instants ,pi is
the planimetric area of the i-th element and Si is the set of the lines of the
i-th polygon, λj is the length of the un+1

j is the flux across the j-th line and
σij is an object defined as follows:

σij =


−1 if uj is positive when outcoming the i-th polygon
+1 if uj is positive when incoming the i-th polygon
0 if the j-th line is not a side of the i-th polygon

(3)

The flux un+1
j are defined by a discretized form of Darcy’s law:

un+1
j = −KSj H

n+q
j

ηn+1
r(j) − η

n+1
l(j)

δr(j),c(j)
(4)

where KSj is the saturated hydraulic conductivity related to the j-th line, the
thickness Hn+q

j is an attribute of the j-th line at the n + q-th time instant

between the two n-th and n + 1-th time instants (0 ≤ q ≤ 1) , ηn+1
r(j) is
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piezometric surface at the centroid of the right-side polygon respect to the j-
th line whereas ηn+1

j(j) is the one at the centroid of the left-side polygon, δr(j),c(j)

between the centroids of the left-side and right-side polygons. The flux un+1
j

is positive when mass goes from the left-side to the right-side polygons, and
negative otherwise. Thus, putting (4) into (2), it is:

s pi η
n+1
i = s pi η

n
i −∆tn

∑
j∈Si

σijλjKSj H
n+q
j

ηn+1
r(j) − η

n+1
l(j)

δr(j),c(j)
+ ∆ tnQn+1

i pi (5)

Let us note that if it is r(j) = i, it becomes σij = 1 for (3), otherwise it is
l(j) = i and σij = −1, thus simplifying (5) as follows:

s pi η
n+1
i = s pi η

n
i + ∆tn

∑
j∈Si

λjKS H
n+q
j

ηn+1
m(i,j) − η

n+1
i

δi,m(i,j)

+ ∆ tnQn+1
i pi (6)

where m(i, j) is the index of the m-th polygon that shares the j-th line with
the i-th polygon. m(i, j) is a function of the indices i and j and it is given
by the topology.
In the case q = 0, the equation (6) gets linear and is so rearranged:

si pi η
n+1
i −∆tn

∑
j∈Si

λjKS H
n
j

ηn+1
m(i,j) − η

n+1
i

δi,m(i,j)

= si pi η
n
i + ∆ tnQn+1

i pi (7)

where Qn+1
i is assumed to be independent from the unkown η. The equation

(7) is solved for each polygon, therefore (7) is organized in a equation system
as follows:

A · ηn+1 = b (8)

where ηn+1 is the vector of the unknowns for each polygon, A is linear op-
erator and b is a vector given by the right hand side of (7). The vector b is
thus defined as follows:

bi = s pi η
n
i + ∆ tnQn+1

i pi (9)

and the operator A is defined as follows:[
A · ηn+1

]
i

= s pi η
n+1
i −∆tn

∑
j∈Si

λjKS H
n
j

ηn+1
m(i,j) − η

n+1
i

δi,m(i,j)

(10)

The operator A is linear and symmetric, thus the equation system (8) can
be solved with the Conjugate Gradient method (Schewchuk , 1994).
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2.3 Casulli (2008)’s Modified discretized equation

The resolution of (7) could provide negative values of water-table thickness,
specially during a drying process coupled with a relatively large time step ∆t
. The time derivative is correctly referred to the variation of water volume
in a point or in a cell, if the water surface varies lower than the bottom
elevation, the cell is empty and the water volume is null. Therefore, the
equation (7) is rewritten in the new following form:

si pi η
n+1
i − s pi zbi −∆tn

∑
j∈Si

λjKS H
n
j

ηn+1
m(i,j) − η

n+1
i

δi,m(i,j)

= (11)

= si pi η
n
i − s pi zbi + ∆ tnQn+1

i pi

where zbi is the elevation of the node of the i-th cells. The first two terms of
the left hand side represents the amount of water volume stored at the time
instant n+1 whereas the first two terms of the right hand side corresponds to
the stored water volume at the previous time instant n . The water volume
are positive quantities and negative values of water volume which can be
obtained by solving (11), thus the equation (11) is adjusted as follows:

max{0, si pi ηn+1
i − si pi zbi} −∆tn

∑
j∈Si

λjKS H
n
j

ηn+1
m(i,j) − η

n+1
i

δi,m(i,j)

= (12)

= max{0, s pi ηni − s pi zbi}+ ∆ tnQn+1
i pi

where in case of ηi < zb the water volume is zero. The equation (12) is
rewritten after introducing the following functions:

Wi(ηi) =

{
s pi ηi ≥ zbi
0 ηi < zbi

(13)

and becomes:

ηn+1
i Wi(η

n+1
i )−∆tn

∑
j∈Si

λjKS H
n
j

ηn+1
m(i,j) − η

n+1
i

δi,m(i,j)

= (14)

= ηni Wi(η
n
i )− zbi

[
Wi(η

n
i )−Wi(η

n+1
i )

]
+ ∆ tnQn+1

i pi

The equation (14) can be rewritten in a matrix format as follows:[
P(ηn+1) + T

]
· ηn+1 = b2(ηn+1) (15)
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where ηn+1 is the vector of the unkowns for each polygon, T and P(ηn+1) are
symmetric matrices and b is a vector given by the right hand side of (14).
The vector b2 is defined as follows:

b2i(η
n+1
i ) = ηni Wi(η

n
i )− zbi

[
Wi(η

n
i )−Wi(η

n+1
i )

]
+ ∆ tnQn+1

i pi (16)

and the matrix T is defined as follows:[
T · ηn+1

]
i

= −∆tn
∑
j∈Si

λjKS H
n
j

ηn+1
m(i,j) − η

n+1
i

δi,m(i,j)

(17)

then the matrix P is a diagonal matrix defined as follows:

Pi,j(η
n+1) =

{
Wi(η

n+1
i ) i = j

0 i 6= j
(18)

The equation system (19) is then solved with a Picard reiterative method:[
P(mηn+1) + T

]
·m+1 ηn+1 = b2(m+1ηn+1) (19)

where m is the reiteration level.

2.4 Casulli (2008)’s Modified discretized equation with
variable bottom

The resolution of Boussinesq Equation is further improved taking into ac-
count low-scale variability of the bottom surface wich is not pfurtherlylanar.
To do so, some functions need to be defined.

• 3D porosity P (x, y, z): is a function defining the porosity also dis-
tributed in the soil thickness. Assuming an uniform vertical profile of
porosity, it is defined as follows:

P (x, y, z) =

{
s(x, y) z ≥ zbi
0 z < zbi

(20)

• Wet area in the i-th cell Wsi(ηi) : This the area covered by water
in the i-th cell within a certain water surface elevation ηi ([L2]:

Wsi(ηi) =

∫
pi

P (x, y, ηi)dx dy (21)

where pi is the planimetric area of the i-th cell.
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• Water depth Hwi(x, y, η) [L]: This is the water thickness in a generic
point (x, y) of the domain defined as follows:

Hwi(x, y, η) =

∫ ηi

−∞
P (x, y, z)dz = s(x, y) ·H(x, y, η) (22)

where η is the water surface elevation, x and y are the planimetric
coordinates and H(x, y, η) is the water-table thickness.

• Stored Water Volume of i-th cell in function of ηi Vi(ηi): the
water volume is then introduced and calculated as follows:

Vi(ηi) =

∫ ηi

−∞
Wsi(z)dz =

∫
pi

Hw(x, y, ηi)dx dy (23)

• Vertical area over the j-th, line Aj(ηj): This is the vertical area
shared by two adjacent cells, r(j)-th and the c(j)-th ones (respectively
on the right and on the left of the j-th line)

Aj(ηr(j),c(j)) =

∫ l2

l1

H(x(l), y(l), ηr(j),c(j))dl (24)

where l is a parametric coordinate, l1 and l2 are values of l related
to the edges of the j-th line, x(l) and y(l) are parametric laws which
returns the coordinates of a generic point of the j-th line and ηr(j),c(j)
is an average value between ηr(j) and ηc(j).

Consequently, the discretized Boussinesq Equation (12) is modified as
follows:

Vi(η
n+1
i )−∆tn

∑
j∈Si

KS Aj(η
n
i,m(i,j))

ηn+1
m(i,j) − η

n+1
i

δi,m(i,j)

= (25)

= Vi(η
n
i ) + ∆ tnQn+1

i pi

where, in the particular case of cells with horizontal bottoms, the functions
Vi(ηi) and Aj(ηi,m(i,j)) are defined as follows:

Vi(ηi) = (ηi − zbi)Wi(ηi) (26)

and
Aj(ηi,m(i,j)) = λj Hj (27)
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The equation (25) can be organized in the system algebraic equation:

V(ηn+1) + T · ηn+1 = b3 (28)

where ηn+1 is the vector of the unkowns for each polygon, T is a symmetric
matrix, V(ηn+1) is the vector of the water volume Vi(η

n+1
i ) for each i-th

polygon and b3 is a vector given by the right hand side of (25). The vector
b2 is defined as follows:

b3i = Vi(η
n
i ) + ∆ tnQn+1

i pi (29)
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and the matrix T is defined as follows:

[
T · ηn+1

]
i

= −∆tn
∑
j∈Si

KS Aj(η
n
i,m(i,j))

ηn+1
m(i,j) − η

n+1
i

δi,m(i,j)

(30)

The solution of (25) is obtained with the Newton-like iterative method (Ca-
sulli , 2008):

m+1ηn+1 =m ηn+1−
[
Ws(mηn+1) + T

]−1 [
V(mηn+1) + T ·m ηn+1 − b3

]
(31)

where m is the reiteration level. The introduced vector is Ws(mηn+1) is the
vector of the wet area for each cell, in fact from (32), it is:

Wsi(ψi) =
dVi(ηi)

dηi
(32)

The solution of (31) is unique and can be implemented (Casulli , 2008) .

2.5 Dirichlet Cells

Several analytic solutions of the Boussinesq Equation (Hogarth and Parlange,
1999) are coupled with Dirichlet boundary coditions which means that in a
certain boundary nodes the water surface is an a priori known function of
time. In several cases this condition is applied on the interface between water-
table and rivers,lakes, reservoirs where water surface rapidly moves driven
by external forcings.
To account this, the system (25) can be rewritten for each i-th cell:(
Wsi(

mηn+1
i ) + Ti,i

)
(mηn+1

i −m+1 ηn+1
i ) +

∑
j∈Si

Ti,m(i,j)(
mηn+1

m(i,j) −
m+1 ηn+1

m(i,j)) =

= Vi(
mηn+1

i ) + Ti,i
mηn+1

i +
∑
j∈Si

Ti,m(i,j)
mηn+1

m(i,j) − b3i(33)

The equation (33) is not verified in the polygons where a Dirichlet condition
is posed and is replaced by the following equation:

m+1ηn+1
i = hn+1

i (34)
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where the i-th is here a Dirichlet cels and hfn+1
i is the surface water elevation

of the call at the n+ 1-th time instant. If the i-th cells is not a Dirichlet cell
but is near one or more Dirichlet cells, the equation 33 is here rewritten:

(Wsi(
mηn+1

i ) + TND
i,i )(mηn+1

i −m+1 ηn+1
i ) +

∑
j∈Si

TND
i,m(i,j)(

mηn+1
m(i,j) −

m+1 ηn+1
m(i,j)) = (35)

= Vi(
mηn+1

i ) + TND
i,i

mηn+1
i +

∑
j∈Si

TND
i,m(i,j)

mηn+1
m(i,j) +

∑
j∈Si

TD
i,m(i,j) h

n+1
m(i,j) − b3i

where the matrix T is split into two components: TND which is a sparse
matrix whose non-zero entries are in the central diagonal and at the location
i.m(i, j) where i-th and m(i, j) are non-Dirichlet cells and TD whose nonzero
entries correspond to the connectivity between a Dirichlet and a non-Dirichlet
cells. Then, it is:

T = TND + TD (36)

In the presence of Dirichlet cells, the algebraic equation system (31) must be
modified as regards the Dirichlet and neighboring cells.

2.6 Free drainage condition at the outlet cells as sink
terms

In the previous subsections, Boussinesq Equation is solved with no-flux con-
ditions on the whole boundary. In a case of a catchement this is reasonable
execept at the outlet where a soil water discharge occurs. Due to the symmet-
ric mathematical structure of (1), the boundary can be assumed impermable
and the discharge at the outlet can be expressed as a sink term, as follows:

s
∂H(η, x, y)

∂t
= ∇ · [KS H(η, x, y)∇η] +Q−QR (37)

where QR is the discharge which is non-null only at at the outlet and has the
same dimension of Q [L2 T−1]. The quantity QR can be defined in the whole
domain is expressed as follows:

QR =

∫
Γ

QRN(ξ)δ(x− x(ξ))δ(y − y(ξ))dξ (38)

where Γ is the closed boundary line delimiting the catchment (domain), ξ
is a curvilinear metric coordinate alonge the boundary line. The expression
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38 is an integral over the boundary line of the quantity QRN [L2 T−1] which
is the net discharge per unit of boundary length mutiplied by two Delta
Dirac functions ([L−1] each). The relations x(ξ) and y(ξ) are the parametric
equation of the boundary line and depend on its shape. The quantity QR is
null in the most of domain and infinity in a certain portion of the boundary.
But, if we consider a generic area Ω(Γp) of the domain containing a portion
Γp (Γp ⊆ Γ) of the boundary line, we can calculate the total discharge QRTOT

[L3 T−1] crossing the generic line Γp as:

QRTOT =

∫
Γp

QRN(ξ)dξ (39)

and we can also verify by the properties of the Delta Dirac function that:

QRTOT =

∫
Ω(Γp)

QRdx dy =

∫
Ω(Γp)

∫
Γ

QRN(ξ)δ(x− x(ξ))δ(y − y(ξ))dξdx dy

(40)
The equation (39) and (40) are equivalent and are applied when (37) is
dicretized in the cells near the boundary.
The function QRN can have null or finite values and must be defied as a an
external condition throurhg a particular algebraic formula. Assuming that
O ⊂ Ω is the outlet width, the simplest formula which can be adopted is a
power-law function:

QRN =

{
Ξ(x(ξ), y(ξ)) ·Hp (x(ξ), y(ξ)) ∈ O
0 (x(ξ), y(ξ)) /∈ O (41)

where p is an empirical exponent (dimensionless) and Ξ(x(ξ), y(ξ)) [L2−p T−1]
is an empirical positive coefficient resuming flow properties of the outlet.
Then, we can calculate by 41 and 39 the total discarge QRTOTj through the
j-th line belonging to the outlet (λj ⊂ O) as follows:

QRTOTj =

∫
λj

QRN(ξ)dξ (42)

Finally, the disceretized equation (25) is corrected as follows:

Vi(η
n+1
i )−∆tn

∑
j∈Si

KS Aj(η
n
i,m(i,j))

ηn+1
m(i,j) − η

n+1
i

δi,m(i,j)

= (43)

= Vi(η
n
i ) + ∆ tnQn+l

i pi −
∑
j∈Oi

∆ tnQn
RTOTj
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where Oi is the subset of lines which are edges of the i-th polygon and are
portion of the outlet O ( Oi ⊆ O). The known-term vector b3 defined by
(44) is modified as follows:

b3i = Vi(η
n
i ) + ∆ tnQn+1

i pi −
∑
j∈Oi

∆ tnQn
RTOTj (44)

For the convergence of the Newton-like iterations, the sum of the elements
of the vector b3 are recommended to be posive, at least in the cells around
the outlets. This afects the choice of the time step ∆tn .
The reader note that the discharge at the outlet is here implemented in an
explicit way as a sink term. The possibilty to treat the darainage in an
implicit way must be investigated.

2.7 Surface water flow - added on Nov 5, 2009

The Boussinesq model is extended to the description of surface flow according
to (Casulli , 2008). In the following some passages are shown, both surface
equation solved by 2D De Saint Venant Equation and subsurface flow solved
with Boussinesq Equation are lumped in an unique equation which is than
discretized. Tha mass balance of a cell in a discritizad form is described by
The equation (1) can be written as a conservation law for a generic i-th cell:

Vi(η
n+1
i ) = Vi(η

n
i ) + ∆tn

∑
j∈Si

σijASURFj(η
n
i,m(i,j))v

n+1
SURFj + (45)

+∆tn
∑
j∈Si

σijASUBSj(η
n
i,m(i,j))

n+1vn+1
SUBSj + ∆ tnQn+q

i pi

where the volume function Vi(η
n+1
i ) accounts for both surface and subsurface

water. The functions ASURFj(η
n
i,m(i,j)) and ASUBSj(η

n
i,m(i,j)) are vertical sur-

face and subsurface areas respectively and they are calculated according to
24:

• Vertical surface area over the j-th, line ASURFj(ηj): This is the
vertical area shared by two adjacent cells, r(j)-th and the c(j)-th ones
(respectively on the right and on the left of the j-th line)

ASURFj(ηr(j),c(j)) =

∫ l2

l1

max{ηr(j),c(j)), zs(x, y)}dl (46)

where zs(x, y) is the elevation of the terrain surface.
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• Vertical subsurface area over the j-th, line ASUBSj(ηj): This is
the vertical area shared by two adjacent cells, r(j)-th and the c(j)-th
ones (respectively on the right and on the left of the j-th line)

ASUBSj(ηr(j),c(j)) =

∫ l2

l1

max{min{ηr(j),c(j)), zs(x, y)}, zb(x, y)}dl (47)

where zb(x, y) is the elevation of the bedrock surface.

The quantiaties vn+1
SURFj and vn+1

SUBSj are the surface and subsurface veloc-
ities noramal to the j-th line and can be calculated as follows:

• Subsurface velocity the j-th, line vn+1
SUBSj obtained by Darcy’ law:

vn+1
SUBSj = −KSj

ηn+1
r(j) − η

n+1
l(j)

δr(j),c(j)
(48)

• Surface velocity the j-th, line vn+1
SURFj : obtained by momentum

budget equation for surface water and disceretized according to Casulli ,
2008 :

vn+1
SURFj =

ASURFj(ηr(j),c(j))

λj ∆tn

(
vnSURFj − g∆tn

ηn+1
r(j) − η

n+1
l(j)

δr(j),c(j)

)
· (49)

·
[
ASURFj(ηr(j),c(j))

λj ∆tn
+ γ

(
vnSURFj

)p−1
]−1

where g is the gravity acceleration [L T−2] (9.81 m s−2), the cefficient
γ [L2−p T−2+p] and the exponent p are quantiaties releted to bottom
surface waer dissipation and they epend on land use and terrein rough-
ness.

The writing of equation 49 can be simplified as follows:

vn+1
SURFj = F n

j v
n
SURFj − g∆tn F n

j

ηn+1
r(j) − η

n+1
l(j)

δr(j),c(j)
(50)

where the quantity F n
j (dimensionless) is obtain as follows:

F n
j =

ASURFj(ηr(j),c(j))

λj ∆tn

[
ASURFj(ηr(j),c(j))

λj ∆tn
+ γ

(
vnSURFj

)p−1
]−1

(51)
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Finally, the surface velocity can be split into two components: the first is
‘called “symmetric” and depends on ηn , the second called “asymmetric”
olny depends the state of the previous time step. Then, it is:

vn+1
SSj = −g∆tn F n

j

ηn+1
r(j) − η

n+1
l(j)

δr(j),c(j)
(52)

vn+1
SAj = F n

j v
n
SURFj (53)

where vn+1
SSj and vn+1

SAj are the “symetric” and “asymmetric” surface velocities

(vn+1
SURFj = vn+1

SSj + vn+1
SAj ). The equation (45) is then raarranged:

Vi(η
n+1
i )−∆tn

∑
j∈Si

σijASURFj(η
n
i,m(i,j))v

n+1
SSj + (54)

−∆tn
∑
j∈Si

σijASUBSj(η
n
i,m(i,j))

n+1vn+1
SUBSj =

= Vi(η
n
i ) + ∆tn

∑
j∈Si

σijASURFj(η
n
i,m(i,j))v

n+1
SAj + ∆ tnQn+q

i pi

Then, it is assumed:[
T · ηn+1

]
i

= −∆tn
∑
j∈Si

σijASURFj(η
n
i,m(i,j))v

n+1
SSj + (55)

−∆tn
∑
j∈Si

σijASUBSj(η
n
i,m(i,j))

n+1vn+1
SUBSj

and

b3i = Vi(η
n
i ) + ∆tn

∑
j∈Si

σijASURFj(η
n
i,m(i,j))v

n+1
SAj + ∆ tnQn+q

i (56)

Consequently, equation (45) is written as a weakly-nonlinear equation system
(Casulli , 2008) like (28) :

V(ηn+1) + T · ηn+1 = b3

The system is solved with the Newtion-like iteration method according to
Casulli (2008).
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2.8 Notes

The function water volume Vi(ηi) and wet area Wsi(ηi) defined by (32) and
(21) can be modified and consider the water content in the above unsaturated
zone according to Hilberts et al. (2005, 2007); Cordano and Rigon (2008),
i.e. the soil water pressure is hydrostatically distributed in the whole soil.
Nevertheless, the equation (31) always converges to the unique, only if the
function Vi(ηi) increases with ηi from 0 to infinity and is upward concave
(Casulli , 2008). The Newton iterative method is inadequate for confined
aquifer where water surface ηi can exceed the elevation of the water-table
thickness and other alterative methods are required.
The hydraulic transmissivity KS Aj(η

n
i,m(i,j)) between the i-th and the m(i, j-

th cells is express function of ηi and ηm(i, j as follows:

KS Aj(η
n
i,m(i,j)) = max

{
KS Aj(η

n
i ), KS, Aj(η

n
m(i,j))

}
(57)

where the “wetter” cells dominates, otherwise other possible formulas for
transmissivity ara applicable:

KS Aj(η
n
i,m(i,j)) =

KS Aj(η
n
i ) +KSAj(η

n
m(i,j))

2
(58)

or

KS Aj(η
n
i,m(i,j)) = min

{
KS Aj(η

n
i ) +KS Aj(η

n
m(i,j))

2
,max

{
KS Aj(η

n
i ), KS, Aj(η

n
m(i,j))

}}
(59)

All of these formulas affect the transient regimes and must be checked with
real data or exact analytical solutions of Boussinesq Equation since they
exist).

3 The space discretization in the Boussinesq

Model

The Boussinesq Model discretizes (1) and solves its discretized form for every
cell of the mash. If we consider the equation (25) as the discretized form of
Boussinsq Equation, the domain is divided into two meshes. In a coarse
mesh, Boussinesq Equation is discretized, in the finer one, all topographical
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data and soil properties are are contained and utilized to calculate the stored
water volume and the wet area for each coarse cell. At the actual state, the
code works on raster maps in a grass or esriascii format but its architecture
is thought to manage also unstructured meshes.
Before solvig numerically the Boussinesq Equation, some classes and some
objects must be defined and introduced . These classes are referred to the
geometric information of the resolution mesh, “C” data structure types and
they are inspired to the FluidTurtle functions (Rigon and Zanotti , 2002).
Some objects useful for the numerical solution of (25), like the two meshes,
are then obtained by a realization of these classes. The realization of these
classes creates in the models to create specific objects for the numerical finite-
volume solutions.

3.1 Basic Classes for one square grid

Before introducing the whole grid (or mesh) , the model defines the following
basic classes:

• POINT : contains an integer value (which is an index) and three
floating point values which are the cartesian coordinates;

• LINE : contains an integer value (which is an index), two points which
are the start and ends points and a floating point value which is the
length of the line segment

• LINEVECTOR: is an array of LINE classes where the index of each
line corresponds to the position of the line in the LINEVECTOR.

Since each line of the mesh is considered as a LINE class object with a pre-
defined LINEVECTOR class object, each segment of the mesh is numbered.
So, other classes are created using only the line indices:

• POLYGON contains an integer value (which is an index), a vector of
integer numbers (LONGVECTOR in the FluidTurtle formalism (Rigon
and Zanotti , 2002)) which are the indices of the edges, a POINT class
which is the centroid of the polygon (Casulli , 2008) and the floating
point value which is the topographic area of the polygon;

• POLYGONVECTOR : is an array of POLYGON classes where the
index of each polygon corresponds to the position of the polygon in the
POLYGONVECTOR.
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Then, we can also consider that all polygons in the mesh and are all numbered
in a POLYGONVECTOR object. Consequently, a generic property, like
water surface or bottom elevation which is defined in a line segment or in a
polygon cell, can be saved as an array where the value at the i-th position is
related to the i-th line segment or polygon respectively.
Further information about the connections among neighboring polygons are
needed to solve (25) and can be obtained by the POLYGONVECTOR object
by checking the indices of the common edges. A new class is hare introduces:

• polygon connection attributes contains a vector of the indices of
the neighbouring polygons and a vector of floating point values which
are the distance from the centroid to the centroid of the neighbouring
polygon (the size of the two vectors is given by the number of the
edges and the elements are ordered following the order of the edge
indices in the related POLYGON object)(If the edge belongs to the
boundary of the mesh, the index and the centroid distance is replaced
by conventional boundary-indicator negative values) .

As processed for LINEVECTOR and POLYGONVECTOR classes, the array
of polygon connection attributes is here introduced:

• polygon connection attribute array: is an array of several poly-
gon connection attributes objects where the generic i-th element is re-
ferred to the i-th polygon of the related POLYGONVECTOR class
object.

Finally, a new type is introduces to define the whole resolution grid wich is:

• GRID: which contains a LINEVECTOR object, a POLGNVECTOR
object and a polygon connection attribute array object. (The POLY-
GONVECTOR and the polygon connection attribute array must be of
the same size)

The class GRID can be realized in a mesh with all necessary information
to solve the Boussinesq Equation. In the Boussinesq Model the mesh is
extracted by a raster map excluding the null pixels. A surface filling curve
crosses each non-null pixels and assign an integer index (between 1 and the
number of non-null pixels ) to the crossed pixel. The polygons are square
and correspond to the non-null pixels, the border between a non-null pixels
and the neighboring ones is an edge, and then a segment line, thus a new
class called SQUARE GRID is created and has the following fields:
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• a GRID object.

• a raster map where each pixels is filled with the indices of the po index
in the GRID.POLYGONVECTOR object;

• a raster map where each pixels is filled with the index of its (top)
horizontal edge in the GRID.LINEVECTOR object;

• a raster map where each pixel contains the index of its (top) vertical
edge in the GRID.LINEVECTOR object;

• a raster map where each pixels contains the index of its (top-left) vertex.

Then, a square mesh built with the pixels of raster maps is then solved. The
raster map fiels of the class easily translate possible raster map of distributed
properties (bottom elevation, water surface properties, porosity, etc..), given
as raster map into vectors which are processed by the Boussinesq Model. A
careful reader might note that the raster contained in the SQUARE GRID
class have different null pixels: a null pixels could have a left or top edge
which belongs to the left or top neighboring pixel and to he boundary. For
this reason, the raster map of input/output data must contains null values
at the borders, this avoids error due to memory allocation and access during
the execution.

3.2 Double Square Grid

:
The class introduced in the previous subsection allows the integration of

the Boussinesq Equation in a square mesh but does not take into account
to use two different spatial resolution: the first for the numerical solving
and the second for some spatial distributed topographic and soil properties.
For simplicity, the two grids must be multiple, i.e. all the segment lines of
coarse grid belongs to the lines of the fine grid and no fine cell is divided by
a line segment of the coarse grid. To do this, a new class called DOUB-
LESQUARE GRID whose fields are the following:

• a SQUARE GRID which is the grid with coarse mesh;

• a SQUARE GRID which is the grid with fine mesh;
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• a vector of matrices which contains the indices of the fine pixels be-
longing to each coarse cell;

• a vector of vectors which contains the indices of the fine line segments
belonging to each big line

This data structure contains the two grids and the references between the
coarse grid and the fine one. The coarse and fine grids are read by the input
data, e.g. bottom elevation map, which must be provided at two resolutions
as input data, the references between the two grids are consequently cal-
culated. A realization of this class in an object defines the wet aerea and
stored water volume function reported in (25) for each coarse cell at every
time steps, and the Boussinesq Model could run.

3.3 Remarks

Further documentation about the implemented functions and data structures
in the code is automatically generated by Doxygen and available on line in
HTML format.

4 How to set a simulation

This section reports the necessary information to set a simulation with a
Boussinesq map. Every input/output files is associated to the keys which
constitutes a hashmap as already developed in the GEOtop Distributed Hy-
drological Model (www.geotop.org) (Rigon et al., 2006).

4.1 List of the keys

The keys are keywords are all listed in the ascii text file bossinesq.init and
always updated within the code . The actual list of all possible keywords is
here reported in the following list:

• I MORPHO ELEVATION COARSE : Digital terrain model at
the coarse grid resolution
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• I MORPHO ELEVATION FINE : Digital terrain model at the
fine grid resolution

• I INITCOND WATERSURFACE ELEVATION : map of ini-
tial water surface of porosity (coarse grid)

• I POROSITY FINE : map of porosity (fine grid)

• I SOURCEMAPSERIES COARSE : series of maps at different
time instant (suffix)

• I PARAM FT FILE : Fluidturtle ascii files with parameters (name
with extension)

• I TIMES FT FILE : Fluidturtle ascii files with time information for
source/rainfalls (name with extension)

• O RESUME FILES : Output files containing grid resolution

• O COARSEMAP INDEX CELL : Output map containing indices
of coarse cells

• O COARSEMAP INDEX LINES : Output map containing in-
dices of coarse lines

• O FINEMAP INDEX CELL : Output map containing indices of
fine cells

• O FINEMAP INDEX LINES : Output map containing indices of
fine lines
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• O COARSEMAP WATERSURFACE ELEVATION : Output
map containing water surface elevation

• O COARSEMAP WATERMASS ERROR : Output map con-
taining water surface mass error

4.2 Example of a simulation folder

The values of the keys are strings and are assigned in a file called boussi-
nesq.inpts . An example of the file boussinesq.inpts is illustrated in the
screenshot of figure 4.2.

In this case, the data are organized in sub-directories, which the user con
modify according to his/her preferences. Coherently to the configuration as
shown in figure 4.2, the tree of the simulation setting is displayed 4.2.

• input: contains the raster maps of bottom elevation at the two res-
olution, the map of porosity (at the fine resolution) and the map of
the initial water surface elevation (at the coarse resolution) (The maps
have the extension .asc and are in grassasci format ).

• input sourcemaps : contains the raster maps of sources at certain
time steps. The maps are the name give by the value of the key
I SOURCEMAPSERIES COARSE plus the string written in the file
whose key is I TIMES FT FILE .

• param : contains two input files whose keys are I PARAM FT FILE
and I TIMES FT FILE (see figure 4.2 and 4.2). The first one contains
physical and numerical parameters, in the second one there are the time
instant at which source/rainfall maps (expressed in m/s) are provided
and the respective suffices following the value of I SOURCEMAPSERIES COARSE
which forms the name of the specific maps.

• res geom : contains output map and text with the properties related
to the DOUBLESQUARE GRID object.

• log : directory where one can save the output on the terminal of the
Boussinesq model.
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Figure 2: Screenshot of the file boussinesq.inpts
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Figure 3: Screenshot of the simulation directory tree
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Figure 4: Screenshot of the I PARAM FT FILE file

• output : which contains the results of the Models, i.e. tha maps of
water surface elevation and the the water mass balance error for each
pixels.

4.3 Running a simulation and results

When all input file are prepared in the simulation directory, the Boussinesq
Model can be launched with following arguments:

• ‘ -wpath ${working path} -creates the grid (-verbose)

Then the program starts running and creates the maps of water surface ele-
vation as thickness.
An example simulation is here reported and is applied to a mountain catch-

ment (Saldur Creek, Matsch Valley, South Tyrol, Italy) (figure 4.3). The
basin are is about 100 km2, the bottom elevation is taken equal to the digital
terrain model which is available at a resolution of 20 m. The Boussinesq
Equation is here solved at a resolution of 60 m, as shown in table 4.3.

The time step for the numerical integration is now fixed to 104, the hy-
draulic conductivity and the porosity are assumed to be constant as reported
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Figure 5: Screenshot of the I TIMES FT FILE file

Figure 6: DTM of Saldur Creek (South Tyrol, Italy) at a 20 m resolution.
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Table 1: Utilized parameters
kS [m/s] Porosity Area [m2] Fine Grid Res.[m] Coarse Cell. Res. [m] ∆t [s]
10−1 0.4 9.897 · 107 20.0 60.0 104

in table 4.3. Initially, it is assumed that water is uniformly distributed in
the whole catchment and the initial water surface elevation is above 1 m. No
rainfall and no sources are not considered and they are assumed to be zero.
As expected water flows downslope very fast along the hillslopes and ac-
cumulates in the hollows. Figure 4.3 shows the water thickness (which is
H(η, x, y) and illustrated in figure 1 ) after 104 s, 105 s, 106 s and 107 of
simulation. After long times water tends to accumulate at the bottom of
the catchment with ‘very big “unrealistic” values of thickness, it is reminded
that all the boundary (outlet included) is assumed to be impermeable. This
condition helps the user to verify the global conservation of the mass during
the simulation. Once verified, a suitable boundary condition can be posed
at the outlet to simulate the complete “real” behaviour of the catchment.

5 GNU General Public License

The model (executable file) and the source code are open-source Free Soft-
ware under the GNU General Public License (GPL) 3.0 or later. See on
www.boussinesq.org for further details.
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Figure 7: Maps of simulated water surface thickness expressed in · 10−2

(centimeters) m at time 104 s (left top), 105 s (right top), 106 (left bottom)
and 107 (right bottom).
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6 List of Symbols
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Symbol Dimension Definition
b [L3] vector of known terms introduced in the equation

systems (8) and defined by (9)
b2 [L3] vector of known terms introduced in the equation

systems (15),(19) and defined by (16)
b3 [L3] vector of known terms introduced in the equation

systems (28) and defined by (16)

l(j) index of the cell on the left-hand side of the j -th
line segment

m(i,j) index of the cell that shares the j -th line segment
with the i -th cell

pi [L2] topographic area of the i -th cell
r(j) index of the cell on the right-hand side of the

j -th line segment
s,s(x,y) porosity

si porosity at the i -th cell

t [T] time
unj [L T -1] water flux crossing the j -th line segment at the

the n-th time instant
x,y [L] space coordinate
zb [L] soil bottom elevation
zbi [L] soil bottom elevation at the i -th cell
A [L2] symmetric matrix introduced in the equation sys-

tem (8) and defined by (10)
Ai(ηr(j), c(j)) [L2] Vertical area over the j-th line
H,H(x, y, η) [L] water-table thickness
Hn
j [L] water-table thickness on the j -th line segment at

the n-th time instant
Hw(x, y, η) [L] water depth
KS [L T -1] saturated hydraulic conductivity

P (x, y, z) 3D porosity
P(ηn+1,m) [L2] diagonal matrix defined by (18) (Brugnano and

Casusulli , 2008)
Q [L T -1] source term (water-table discharge)
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Qn
i [L T -1] source term (water-table discharge) at the i -th

cell in the n-th time instant
Si * set of the edges of the i -th cell
T [L2] symmetric matrix introduced in the equation sys-

tems (15),(19) and defined by (17), this symbol is
newly re-used and redefined by (??) and defined
by (30)

Vi(ηi) [L3] water volume stored in the i -th cell defined as
a function of water surface elevation ηi

V(η) [L3] vectors of water volume stored each cell defined
as a function of vector of water surface elevation
η

Wi(ηi) [L2] water volume per thickness unit stored in the i -
th cell defined as function of water surface
elevation by (??) (in case of horizontal bottom)

Wsi(ηi) [L2] Wet area in the i-th cell
δiq [L] euclidean distance between the centroids of the

i -th and q-th cells
ηi [L] water surface elevation at the i -th cell

ηi,d [L] averaged water surface elevation between the i -th
and d -th cells

ηni [L] water surface elevation at the i -th cell in the n-th
time instant

ηn+1 [L] vector of water surface elevation at the (n+1 )-th
time instant in the equation system (19) and (15)

ηn+1,m [L] vector of water surface elevation at the (n+1 )-th
time at the m-th iteration level instant in the
equation system (19)

λj [L] length of the j -th line segment
σij object defined by equation (3)
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∆tn [T] time step between the n-th and the (n+1)-th
time instants

31



References

Brugnano, L., and V. Casusulli (2008), Iterative solution of piecewise linear
systems, J. Sci. Comput., 30 (1), 463–472.

Brutsaert, W. (1994), The unit response of groundwater outflow from a hill-
slope, Water Resour. Res., 30 (10), 2759–2764.

Casulli, V. (2008), A high-resolution wetting and drying algorithm for free-
surface hydrodynamics, Int. J. Numer. Meth. Fluids.

Cordano, E., and R. Rigon (2008), A perturbative view on the subsurface
water pressure response at hillslope scale, Water Resour. Res., 44.

Cordano, E., and R. Rigon (2013), A mass-conservative method for the inte-
gration of the two-dimensional groundwater (boussinesq) equation, Water
Resources Research, 49 (2), 1058–1078, doi:10.1002/wrcr.20072.

Hilberts, A. G., P. A. Troch, and C. Paniconi (2005), Storage-dependent
drainable porosity for complex hillslopes, Water Resour. Res., 41,
W06,001, doi:10.1029/2004WR003725.

Hilberts, A. G. J., P. A. Troch, C. Paniconi, and J. Boll (2007), Low-
dimensional modeling of hillslope subsurface flow: Relationship between
rainfall, recharge, and unsaturated storage dynamics, Wat. Resour. Res.,
43, W03,445 doi:10.1029/2006WR004,964.

Hogarth, W. L., and J. Y. Parlange (1999), Solving the boussinesq equation
using solutions of the blasius equation, Water Resour. Res., 35 (3), 885–
887.

Rigon, R., and F. Zanotti (2002), The Fluid Turtle Library, Version 0.750,
CUDAM - Dipartimento di Ingegneria Civile e Ambientale Universitá degli
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